QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II.
نویسندگان
چکیده
This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single mu4-oxo-ligated Mn ion, often called the 'dangling manganese'. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18 O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1-->S2 transition should produce opposite effects on the two water-exchange rates.
منابع مشابه
Crystallographic Data Support the Carousel Mechanism of Water Supply to the Oxygen-Evolving Complex of Photosystem II
Photosystem II (PSII) oxidizes water to produce oxygen through a four-step photocatalytic cycle. Understanding PSII structure-function relations is important for the development of biomimetic photocatalytic systems. The quantum mechanics/molecular mechanics (QM/MM) analysis of substrate water binding to the oxygen-evolving complex (OEC) has suggested a rearrangement of water ligands in a carous...
متن کاملComputational studies of the O(2)-evolving complex of photosystem II and biomimetic oxomanganese complexes.
In recent years, there has been considerable interest in studies of catalytic metal clusters in metalloproteins based on Density Functional Theory (DFT) quantum mechanics/molecular mechanics (QM/MM) hybrid methods. These methods explicitly include the perturbational influence of the surrounding protein environment on the structural/functional properties of the catalytic centers. In conjunction ...
متن کاملComputational Insights on Crystal Structures of the Oxygen - Evolving 2 Complex of Photosystem II with Either Ca 2 + or Ca 2 + Substituted
8 ABSTRACT: The oxygen-evolving complex of photosystem 9 II can function with either Ca or Sr as the heterocation, but 10 the reason for different turnover rates remains unresolved 11 despite reported X-ray crystal structures for both forms. Using 12 quantum mechanics/molecular mechanics (QM/MM) calcu13 lations, we optimize structures with each cation in both the 14 resting state (S1) and in a ...
متن کاملThe MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes.
Quantum mechanics/molecular mechanics (QM/MM) hybrid methods are currently the most powerful computational tools for studies of structure/function relations and catalytic sites embedded in macrobiomolecules (eg, proteins and nucleic acids). QM/MM methodologies are highly efficient since they implement quantum chemistry methods for modeling only the portion of the system involving bond-breaking/...
متن کاملQuantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II.
The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 363 1494 شماره
صفحات -
تاریخ انتشار 2008